Periodic Trends Info Sheet

REACTIVITY	IONIC RADIUS
The impetus for which a chemical substance	Cations:
undergoes a chemical reaction, either by itself or with	Get smaller when they lose electrons
other materials, with an overall release of energy.	
In other words	Na Na ⁺
How quickly, violently, readily, does an element	
undergo certain reactions. More reactivity means	
faster, more violent, easier reaction with lots of	Anions:
energy released.	Get larger when they gain electrons
Trend	
Metals	
Increase $\downarrow \leftarrow$	
Non-metals	FEFECTIVE NUCLEAR CHARGE - Zeff
Increases $\uparrow \rightarrow$	
	The pull that the nucleus has on electrons
Highest metal = Francium	Zeff = Z – S
Highest non-metal = Fluorine	Z = # of protons
Lowest non-metal = Noble gases (He)	S = Core/Inner electrons (# of electrons in
	previous noble gas + any d or f electrons)
SUBSEQUENT IONIZATIONS	SHIELDING
1st ionization energy	when the inner/core electrons repei the
$X \rightarrow X^+ + e^-$	fooling the full attractive force of the
2nd ionization energy	nuclous. Decreases how strengly the
$X^+ \rightarrow X^{2+} + e^-$	electrons are held onto by the nucleus
3rd ionization energy	
$\mathrm{X}^{\scriptscriptstyle 2+} o \mathrm{X}^{\scriptscriptstyle 3+} + \mathrm{e}^-$	BREAKS IN PATTERINS
Ionization energy increases with each	There are <i>many</i> examples of elements that
subsequent ionization because there is more	do not appear to follow the general trends
attraction between the nucleus and the	typically described. This can be due to a
valence electrons each time you lower the	variety of reasons. Here are two of many
number of valence electrons	reasons why this can happen.
There is a huge leap in ionization energy	 Half-filled orbitals have slightly more stability than expected
once an atom loses all it's valence electrons	$\begin{bmatrix} \text{than expected} \\ \text{Example: n orbital sate } & \uparrow & \uparrow & \uparrow \\ \end{bmatrix}$
because it now looks like a noble gas and	
really doesn't want to let go of any more	Unpairing an electron takes slightly less energy
electrons!	than expected b/c extra electron repulsions
	Example: p orbital set:

_